Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Antimicrob Chemother ; 77(Suppl_2): ii21-ii34, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2315379

RESUMEN

Advances in medicine have led to a growing number of people with compromised or suppressed immune systems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming increasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary aspergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19-associated pulmonary aspergillosis. The treatment landscape for haematological malignancies has changed considerably in recent years, and some recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. Consideration must also be given to the risk of drug-drug interactions between mould-active azoles and small-molecule kinase inhibitors. At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating continuous surveillance and personalized treatment strategies. It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad antifungal spectrum, low level of acquired resistance and limited potential for drug-drug interactions.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones Fúngicas Invasoras , Micosis , Aspergilosis Pulmonar , Humanos , Micosis/tratamiento farmacológico , Micosis/epidemiología , Micosis/diagnóstico , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Infecciones Fúngicas Invasoras/epidemiología , Azoles/uso terapéutico , Hongos , Aspergilosis Pulmonar/tratamiento farmacológico
3.
Redox Biol ; 37: 101715, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-752931

RESUMEN

Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Inflamación/inmunología , Selenio/inmunología , Selenoproteínas/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/inmunología , Citocinas/inmunología , Humanos , Inflamación/tratamiento farmacológico , Isoindoles , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/uso terapéutico , Tratamiento Farmacológico de COVID-19
4.
EBioMedicine ; 59: 102980, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-733876

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease as well as Lou Gehrig's disease, is a progressive neurological disorder selectively affecting motor neurons with no currently known cure. Around 20% of the familial ALS cases arise from dominant mutations in the sod1 gene encoding superoxide dismutase1 (SOD1) enzyme. Aggregation of mutant SOD1 in familial cases and of wild-type SOD1 in at least some sporadic ALS cases is one of the known causes of the disease. Riluzole, approved in 1995 and edaravone in 2017 remain the only drugs with limited therapeutic benefits. METHODS: We have utilised the ebselen template to develop novel compounds that redeem stability of mutant SOD1 dimer and prevent aggregation. Binding modes of compounds have been visualised by crystallography. In vitro neuroprotection and toxicity of lead compounds have been performed in mouse neuronal cells and disease onset delay of ebselen has been demonstrated in transgenic ALS mice model. FINDING: We have developed a number of ebselen-based compounds with improvements in A4V SOD1 stabilisation and in vitro therapeutic effects with significantly better potency than edaravone. Structure-activity relationship of hits has been guided by high resolution structures of ligand-bound A4V SOD1. We also show clear disease onset delay of ebselen in transgenic ALS mice model holding encouraging promise for potential therapeutic compounds. INTERPRETATION: Our finding established the new generation of organo-selenium compounds with better in vitro neuroprotective activity than edaravone. The potential of this class of compounds may offer an alternative therapeutic agent for ALS treatment. The ability of these compounds to target cysteine 111 in SOD may have wider therapeutic applications targeting cysteines of enzymes involved in pathogenic and viral diseases including main protease of SARS-Cov-2 (COVID-19). FUNDING: Project funding was supported by the ALS Association grant (WA1128) and Fostering Joint International Research (19KK0214) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Compuestos de Organoselenio/uso terapéutico , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/patología , Animales , Azoles/química , Azoles/metabolismo , Azoles/uso terapéutico , Betacoronavirus/metabolismo , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Dimerización , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Isoindoles , Ratones , Ratones Transgénicos , Simulación de Dinámica Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Superóxido Dismutasa-1/genética , Tasa de Supervivencia , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
5.
Free Radic Biol Med ; 156: 107-112, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: covidwho-620858

RESUMEN

Ebselen is an organoselenium compound exhibiting hydroperoxide- and peroxynitrite-reducing activity, acting as a glutathione peroxidase and peroxiredoxin enzyme mimetic. Ebselen reacts with a multitude of protein thiols, forming a selenosulfide bond, which results in pleiotropic effects of antiviral, antibacterial and anti-inflammatory nature. The main protease (Mpro) of the corona virus SARS-CoV-2 is a potential drug target, and a screen with over 10,000 compounds identified ebselen as a particularly promising inhibitor of Mpro (Jin, Z. et al. (2020) Nature 582, 289-293). We discuss here the reaction of ebselen with cysteine proteases, the role of ebselen in infections with viruses and with other microorganisms. We also discuss effects of ebselen in lung inflammation. In further research on the inhibition of Mpro in SARS-CoV-2, ebselen can serve as a promising lead compound, if the inhibitory effect is confirmed in intact cells in vivo. Independently of this action, potential beneficial effects of ebselen in COVID-19 are ascribed to a number of targets critical to pathogenesis, such as attenuation of inflammatory oxidants and cytokines.


Asunto(s)
Antioxidantes/uso terapéutico , Antivirales/uso terapéutico , Azoles/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Compuestos de Organoselenio/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/uso terapéutico , Betacoronavirus/enzimología , Betacoronavirus/patogenicidad , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Isoindoles , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Modelos Moleculares , Estrés Oxidativo/efectos de los fármacos , Neumonía Viral/epidemiología , Neumonía Viral/metabolismo , Neumonía Viral/virología , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , Estructura Secundaria de Proteína , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA